

Data Sheet

SC1701BK3-100/10N SC1701BH5-100/10N

Rev1.2 | September 23, 2020 Socionext Europe GmbH Graphic Competence Center – GCC

Attached Files

Socionext Europe GmbH Graphic Competence Center - GCC ds-SC1701BK3/BH5-100-10N-rev1.2 https://www.eu.socionext.com/

Data Sheet GCC-0293-E Copyright 2020

Preface

Intention and Target Audience of this Document

This document describes and gives you detailed insight to the stated Socionext Europe GmbH product.

The SC1701 family devices belong to the SoC Family used for graphics applications.

The target audience of this document are engineers developing products that use the SC1701BK3-100 and SC1701BH5-100 devices. The document describes the function and operation of the devices. Please read this document carefully.

Trademarks

APIX[®] is a registered trademark of INOVA Semiconductors GmbH, Munich, Germany.

System names and product names which appear in this document are the trademarks of the respective company or organization.

Licenses

Under the conditions of Philips corporation I2C patent, the license is valid where the device is used in an I2C system which conforms to the I2C standard specification by Philips Corporation.

The purchase of Socionext I2C components conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.

Contact Us

For more information on Socionext products, as well as for support and sales inquiries, please visit us at www.eu.socionext.com.

ii

History

Revision	Date	Description			
0.30	26.09.2018	First combined release. In sync with HM Rev0.30.			
0.45	09.11.2018	1. Overview: updated "1.2. Features", "1.3.3. Video-Related Features", "1.4. Block Diagrams"			
		1. Overview: Added Test section to "1.2. Features".			
0.50	04.02.2019	2. Electrical Characteristics: Updated "2.5. Reset Timing", "2.9.2. Configuration Pins".			
0.55	08.03.2018	Throughout document changed SC1701A \rightarrow SC1701B			
0.55	00.03.2010	1. Overview: Added "1.6. Part Number Code".			
		Updated attached pinlists to rev1.21.			
0.60	19.07.2019	1. Overview: Removed "On chip power on reset" from "System Features"; updated "1.4. Block Diagrams".			
		2. Electrical Characteristics: Updated "2.2. Power Consumption"; removed "On-Chip Power On Reset Characteristics"; added "2.8. ADC Sampling Time".			
		Attachments: Added file Pinmux_MII_RMII.xlsx. Updated pinlists to rev1.22.			
0.70	24.02.0000	1. Overview: Updated "1.2. Features"; Video Input Interfaces Table 1.5 & Table 1.6 ; Table 1.10, "Video-Related Features"; "1.3. Device Comparison"; "1.4. Block Dia- grams" - MIPI removed.			
0.70 31.03.2020		2. Electrical Characteristics: Added Junction Temp. (TJ) values to Table 2.2, "Rec- ommended Operating Conditions"; "2.10.9. RMII Interface". Updated "2.6. Power-On Sequence"; "2.10.8. MII Interface" "2.8.1. ADC Electrical Characteristics"; Table 2.24, "IO circuit types" see RSDS, LVDS, miniLVDS VOS values.			
) 27.07.2020	1. Overview: Updated Table 1.1, "Overview of SC1701 Series", "1.6. Part Number Code".			
1.00		 Electrical Characteristics: Updated "2.1. Operating Conditions", "2.2. Power Consumption", "2.3. Thermal Design Considerations", "2.8. ADC Sampling Time", "2.10.3.3. LVDS Mode", "2.10.8. MII Interface", "2.10.9. RMII Interface". Restructured "2.11. IO Circuit Types" and updated all "2.11.6. MSIO (Multi Standard IO)". 			
1.2	23.09.2020	Replaced SC1701-BK3 Package picture.			

Table of Contents

1.	Overview	1-1
	1.1. General	1-1
	1.2. Features	1-1
	1.3. Device Comparison	
	1.3.1. General Features	1-9
	1.3.2. APIX-Related Features	1-9
	1.3.3. Video-Related Features	1-10
	1.4. Block Diagrams	1-11
	1.4.1. SC1701BK3-100 Overview Block Diagram	1-11
	1.4.2. SC1701BH5-100 Overview Block Diagram	1-12
	1.5. Package	
	1.5.1. SC1701BK3-100 Package	
	1.5.2. SC1701BH5-100 Package	
	1.6. Part Number Code	
	1.7. Pinning	
	1.7.1. SC1701BK3-100 Pin Overview	
	1.7.2. SC1701BH5-100 Pin Overview	
	1.7.3. Pin Descriptions and Multiplexing	
2.	Electrical Characteristics	2-1
	2.1. Operating Conditions	
	2.1.1. Absolute Maximum Ratings	
	2.1.2. Recommended Operating Conditions	
	2.2. Power Consumption	
	2.3. Thermal Design Considerations	
	2.4. Clock Input	
	2.5. Reset Timing	
	2.6. Power-On Sequence	
	2.7. Flash Memory Program / Erase Characteristics	
	2.8. ADC Sampling Time	
	2.8.1. ADC Electrical Characteristics	
	2.8.2. Timing Characteristics	
	2.9. PCB Layout Recommendations	
	2.9.1. Automotive Pixel Link (APIX)	
	2.9.1. Automotive Fixer Link (AFIX)	
	2.9.2. Configuration Phrs	
	2.10.1. Host SPI Characteristics	
	2.10.1.1 Host SPI Interface	
	2.10.2. Config Interface	
	2.10.3. Display Interface	
	2.10.3.1. TTL Mode	
	2.10.3.2. RSDS Mode	
	2.10.3.3. LVDS Mode	
	2.10.4. SPI Interface (External SPI and Flash SPI)	
	2.10.5. I2C Interface	
	2.10.6. USART/LIN Interface	
	2.10.7. I2S Interface	
	2.10.8. MII Interface	
	2.10.9. RMII Interface	
	2.11. IO Circuit Types	
	2.11.1. OSC	
	2.11.2. INPUT, INPUTH	
	2.11.3. BIDI33	
	2.11.4. Output	2-27

Table of Contents

2.11.5. An	alog	
	SIO (Multi Standard IO)	
2.11.6.1.	LVDS TX	
2.11.6.2.	LVDS RX	2-31
2.11.6.3.	miniLVDS TX	
2.11.6.4.	RSDS TX SST (Single Sided Termination)	
2.11.6.5.	RSDS TX DST (Double Sided Termination)	
2.11.6.6.	TTL	

1. Overview

This document describes the features and functions of the SC1701 family devices SC1701BK3-100 and SC1701BH5-100, as well as variants SC1701BK3-10N and SC1701BH5-10N.

Note: The content of this document is subject to minor changes. Please check the <u>"History"</u> page for a record of the latest updates and modifications.

Device type	Variants and differentiation					
	SC1701BK3-100: Fully featured device.					
SC1701BK3	SC1701BK3-10N: No HDCP functionality at APIX link.					
	SC1701BK3-200: No APIX or HDCP functionality.					
	SC1701BH5-100: Fully featured device.					
SC1701BH5	SC1701BH5-10N: No HDCP functionality at APIX link.					
301/01803	SC1701BH5-200: No APIX or HDCP functionality.					
	SC1701BH5-300: No APIX or HDCP functionality, no mini-LVDS output.					
Note: ES1 (Engineering Sample 1) refers to SC1701AK3 and SC1701AH5 devices.						
For a breakdown of the part number code see <u>"1.6. Part Number Code"</u> .						

Table 1.1.: Overview of SC1701 Series

1.1. General

The SC1701 devices are state-of-the-art graphics controllers especially designed for remote display applications in the automotive industry.

The target application areas are dashboard displays, HUD (Head-Up Display) systems, CID (Central Information Displays) and any other display systems within a car.

SC1701 family devices can be used to enable APIX3[®] (APIX[®] version 3.0) based display systems in multiple applications within the automotive and industrial market segments.

1.2. Features

The SC1701 devices are system-on-chip solutions for graphics applications which incorporate APIX-based graphics engines and graphics display controllers. The features of the SC1701BK3-100 and SC1701BH5-100 devices are listed below.

Technology

- CMOS 55nm NVM
- Power supply voltages:
 - 3.3V IO supply
 - 1.2V core supply

Temperature Range

■ T_a= -40...105°C

Package

- SC1701BK3-100: HS-BGA-319
 - 23x23mm
 - 1.0mm ball pitch
- SC1701BH5-100: EP-LQFP-216
 - 24x24mm
 - 0.4mm pin pitch

Clock Generation

- On-chip oscillator (with external 30.0MHz crystal, 100ppm accuracy)
- On-chip 6GHz APIX PLL
- On-Chip low-jitter 1.5GHz video PLL for each pixel pipeline and each LVDS capture input (overall: 4 instances of video PLL)

System Features

- SC1701BK3-100: 2 display support
- SC1701BH5-100: 1 display support
- APIX3 RX compliant
- Sleep mode
 - Exit sleep mode thru local or remote activity (thru APIX)
- SC1701BK3-100: 300MHz system clock
- SC1701BH5-100: 200MHz system clock
- 128kB embedded FLASH memory with ECC
- 256kB embedded SRAM video memory
- 9kB embedded SRAM with ECC (1kB freely usable, 8kB used by internal modules like Command Sequencer)
- Embedded programmable core (Command Sequencer, 2 cores)
- DMA controller
- Touch controller support (hardware accelerated communication with external touch devices)
- Configuration FIFO (to decouple host command stream and generate isochronous reconfiguration with internal peripherals)
- High-speed quad-mode SPI to connect external Flash or RAM devices
- Ethernet extension
- Spread Spectrum Clock Modulation (for pixel clocks and system clock)
- Watchdog, Alive sender
- CRC checksum calculation unit for checking of memory content
- PVT monitor
- Configuration interfaces
 - Host SPI configuration interface
 - Embedded Ethernet controller (thru APIX AShell)
 - AShell remote handler (thru APIX AShell)

High-speed interfaces for video streams

- SC1701BK3-100
 - APIX3 RX (2x video channels)
 - 2x RX LVDS single mode
 - 1x RX LVDS dual mode
 - 1x TX RSDS single/dual mode
 - 2x TX LVDS single/dual mode
 - 2x TX miniLVDS 3/6 pair mode
 - 1x TX LVDS quad mode
- SC1701BH5-100
 - APIX3 RX (1x video channel)
 - 1x RX LVDS single mode
 - 1x RX LVDS dual mode
 - 1x TX RSDS single mode
 - 1x TX LVDS single/dual mode
 - 1x TX miniLVDS 3/6 pair mode

APIX3

- APIX3 RX compliant
 - Multi-lane PHY
 - Adaptive and "plug-and-play" of PHY configuration
 - Full-duplex and bi-directional communication over single lane
 - SC1701BK3-100: Up to 12Gbit/s
 - SC1701BH5-100: Up to 2x 3Gbit/s
 - Cable support
 - Coax
 - STP
 - QSTP
- APIX2 RX backward compatibility
- APIX3 mode
 - Downstream:

SC1701BK3-100: 1.5Gbit/s, 3Gbit/s, 6Gbit/s (per lane)

SC1701BH5-100: 1.5Gbit/s, 3Gbit/s (per lane)

- Upstream: 187.5Mbit/s (total)
- 30bpp, 24bpp, 18bpp
- APIX2 mode
 - Downstream: 3Gbit/s
 - Upstream: 187.5Mbit/s
 - 24bpp, 18bpp
- Communication
 - Video: 2 independent video streams (downstream)

- Supporting HDCP 1.4
- Audio: I2S (downstream)
- APIX GPIO/AP_FLAG
- AShell (bi-directional)
- Ethernet

SEERIS MVL3 graphics features

- SC1701BK3-100: 2 display controllers (display output)
- SC1701BH5-100: 1 display controller (display output)
 - For each display controller:
 - ♦ Up to 30bit color resolution
 - SC1701BK3-100: Up to 266Mpix/s in single (533Mpix/s in dual) display controller mode
 - SC1701BH5-100: Up to 160Mpix/s (only single display controller mode)
 - Timing controller with up to 12 signal generators
 - Safety display layer for critical content
 - Signature unit (up to 16 windows)
 - IDHash unit (up to 4 windows per pipeline)
 - Dithering, Matrix and Gamma units
- 2 capture controllers (video input)
 - For each capture controller:
 - Video timing analyzer
 - Histogram measurement
 - Test image generator
 - Line splitter
 - Upscaling/Downscaling

• Decode of VESA DSC bit stream v1.2 (Only one instance of VESA DSC is available for use by either capture controller 0 or 1, but not at the same time)

Memory stream

- Safety layer/memory layer inside
- Boot-logo or default stream
- Debug overlay

Peripherals

Note: Peripherals share pins; the following list represents the maximum number of available peripherals.

- 6x stepper motor controller (3.3V)
- 2x I²C + slave function
- 4x SPI (shared with one HS-SPI)
- 2x HS-SPI
- 2x USART/LIN
- SC1701BK3-100: 10-channel ADC
- SC1701BH5-100: 8-channel ADC
- 16x PWM
- SC1701BK3-100: Max 139 GPIO
- SC1701BH5-100: Max 133 GPIO
- CRC unit
- Ethernet arbiter
- I²S via APIX
- I²S as local playback
- Sound generator
- Memory and peripheral protection units
- 8 external interrupts
- 16 reload timers
- CAN in Listen-Only mode

Diagnostics

- Failure unit
 - Panic switch
 - Alive sender
 - System watchdog
- CRC unit
- FLASH with ECC
- SRAM with ECC
- Privileged Access
- Test Register
- HW analysis support for video freeze detection (evaluation cluster)
- Video signature unit (8 per display output)

Test

■ Support for boundary scan (IEEE 1149.1-2001)

Display Interfaces

Table 1.2. : SC1701BK3-100 Display Interfaces

#	Interface	Color depth	#Pins	TCON	Max Pin Freq.	Max Pix Freq. ^(*1)	Example resolution ^(*4)	
		18bit	4x2 Diff	External	1050Mbit/s	150Mpix		
2x	LVDS single mode ^(*2)	24bit	5x2 Diff				~1920x1080	
27	modo	30bit	6x2 Diff					
		18bit	8x2 Diff				~2560x1600@60Hz	
2x	LVDS dual mode ^(*2)	24bit	10x2 Diff	External	1050Mbit/s	300Mpix ^(*3)	(>270Mpix) ∼2880x1080@60Hz	
27	mode	30bit	12x2 Diff				(>205Mpix/s)	
		18bit	16x2 Diff					
1x	LVDS quad mode ^(*2)	24bit	20x2 Diff	External	1050Mbit/s	533Mpix	~3840x2160@60Hz	
	mode	30bit	24x2 Diff					
	Mini LVDS	18bit	8x2 Diff		450Mbit/s	150Mpix	~1920x1080	
2x	3 pair ^(*2)	24bit	Up to 12 CMOS	Internal	600Mbit/s			
	Mini LVDS	18bit	14x2 Diff		450Mbit/s		~2560x1600@60Hz (>270Mpix)	
2x	6 pair ^(*2)	24bit	+ Up to 12 CMOS	Internal	600Mbit/s	300Mpix	~2880x1080@60Hz (>205Mpix/s)	
1x	RGB ^(*2)	18bit	18 CMOS 4 CMOS	External	85Mbit/s Data 170Mbit/s Clk	85Mpix	~1440x900	
	RSDS	18bit	10x2 Diff +12 CMOS					
1x	single	24bit	13x2 Diff +12 CMOS	Internal	170Mbit/s	85Mpix	~1440x900	
	mode ^(*2)	30bit	16x2 Diff +12 CMOS					
		18bit	20x2 Diff +12 CMOS				-1020v1080 (PP)	
1x	RSDS dual mode ^(*2)	24bit	26x2 Diff +12 CMOS	Internal	144Mbit/s	144Mpix	~1920x1080 (RB), 1220x720 (90Mpix)	
		30bit	32x2 Diff +12 CMOS				· (*********************************	

^(*1) Speed applies to panel interface only.

^(*2) Shared multi-standard IO cell is used.

 $^{(*3)}$ Two pixel pipelines needed to transport 2x150Mpix/s.

(*4) These are only example resolutions. Maximum resolutions are determined by the maximum pixel frequencies.

RB: Reduced blanking

#	Interface	Color depth	#Pins	TCON	Max Pin Freq.	Max Pix Freq. ^(*1)	Example resolution ^(*3)
		18bit	4x2 Diff		xternal 800Mbit/s	114Mpix/s	~1920x720
1x	LVDS single mode ^(*2)	24bit	5x2 Diff	External			
		30bit	6x2 Diff				
		18bit	8x2 Diff				
1x	LVDS dual mode ^(*2)	24bit	10x2 Diff	External	600Mbit/s	160Mpix/s	~1920x1200
	mode	30bit	12x2 Diff				
	Mini LVDS	18bit	8x2 Diff	Internal	450Mbit/s	150Mpix/s	~1920x1080
1x	3 pair ^(*2)	24bit	Up to 12 CMOS		600Mbit/s		
	Mini LVDS	18bit	14x2 Diff	laste un el	450Mbit/s	160Mpix/a	. 1020/1020
1x	6 pair ^(*2)	24bit	+ Up to 12 CMOS	Internal	600Mbit/s	160Mpix/s	~1920x1080
1x	RGB ^(*2)	18bit	18 CMOS 4 CMOS	External	85Mbit/s Data 170Mbit/s Clk	85Mpix/s	~1440x900
	RSDS single	18bit	10x2 Diff +12 CMOS	Internal	170Mbit/s	85Mpix/s	~1440x900
1x	mode ^(*2)	24bit	13x2 Diff +12 CMOS				
	mode. /	30bit	16x2 Diff +12 CMOS				
(*1) Speed applies to papel interface only							

Table 1.3. : SC1701BH5-100 Display Interfaces

^(*1) Speed applies to panel interface only.

(*2) Shared multi-standard IO cell is used.

 $^{(*3)}$ These are only example resolutions. Maximum resolutions are determined by the maximum pixel frequencies.

Video Input Interfaces

Table 1.5. :	SC1701BK3-100 Video Input Interfaces
--------------	--------------------------------------

#	Interface	Color depth	#Pins	Max Pin Freq.	Max Pix Freq.	Example resolution	
		18bit	8x2 Diff		160Mpix	~1920x1080	
1x	LVDS dual mode ^(*1)	24bit	10x2 Diff	560Mbit/s			
		30bit	12x2 Diff				
	1x APIX3	18bit		6Gbit/s	600Mpix	~4K ^(*2)	
1x		24bit	2x2 Diff				
		30bit					
		18bit	4x2 Diff		150Mpix		
2x	LVDS single mode ^(*1)	24bit	5x2 Diff	1050Mbit/s		~1920x1080	
	mode	30bit	6x2 Diff				
(*1) Multi-standard IO cell is used							
^(*2) On	^(*2) Only with DSC						
Captu	Capture pins are not shared with Display pins!						

Table 1.6.: SC1701BH5-100 Video Input Interfaces

#	Interface	Color depth	#Pins	Max Pin Freq.	Max Pix Freq.	Example resolution	
		18bit	8x2 Diff		160Mpix	~1920x1080	
1x	LVDS dual mode ^(*1)	24bit	10x2 Diff	560Mbit/s			
	mode	30bit ^(*2)	12x2 Diff				
		18bit		3Gbit/s	160Mpix/s	~1920x1080	
1x	APIX3	24bit	2x2 Diff				
		30bit					
		18bit	4x2 Diff		150Mpix/s		
1x	LVDS single mode ^(*1)	24bit	5x2 Diff	1050Mbit/s		~1920x1080	
	mode	30bit ^(*2)	6x2 Diff				
(*1)Multi-standard IO cell is used							
^(*2) No	^(*2) Not supported by FPD0						
Captu	Capture pins are not shared with Display pins!						

1.3. Device Comparison

The following tables summarize the unique specifications of the SC1701BK3-100 and SC1701BH5-100.

1.3.1. General Features

Table 1.8. : General Feature Comparison

	SC1701BK3-100	SC1701BH5-100
FLASH memory	128kB	128kB
SRAM	256kB	256kB
Dimensions	23x23mm	24x24mm
Package	HS-BGA319	EP-LQFP216

1.3.2. APIX-Related Features

Table 1.9. : APIX-Related Features

	SC1701BK3-100	SC1701BH5-100			
APIX speed downstream	Up to 12Gbit/s	Up to 2x 3Gbit/s= 6Gbit/s			
APIX speed upstream	187Mbit/s*	187Mbit/s*			
APIX video support	2ch	1ch			
* Regardless of 1 or 2 lanes.					

1.3.3. Video-Related Features

	SC1701BK3-100	SC1701BH5-100
Number of display controllers	2	1
RSDS support	1x single/dual RSDS	1x single RSDS
LVDS support	2x single/dual LVDS	1x single/dual LVDS
miniLVDS support	2x 3/6 pair miniLVDS	1x 3/6 pair miniLVDS
Max Htotal	16384	16384
Max Vtotal	16384	16384
Max Hactive	8192	4096
Max Hactive with DSC	3840	3840
Hactive per video pipeline	4096	4096
Max Hactive (input for scaling)	2048	2048
Max pixel clock	1x 533Mpix/s 2x 266Mpix/s	1x 160Mpix/s ^(*1)
Example display resolution	1x 3840x2160 @ 60Hz 2x 2560x1600 @ 60Hz	1x 1920x1200 @ 60Hz
VESA DSC	Yes	Yes
Signature unit	up to 16 windows	up to 16 windows
Safety layer	Yes	Yes
Histogram unit	Yes	Yes
Color pipeline	10Bit / channel	10Bit / channel

1.4. Block Diagrams

1.4.1. SC1701BK3-100 Overview Block Diagram

Figure 1.1.: SC1701BK3-100 block diagram

1.4.2. SC1701BH5-100 Overview Block Diagram

SOCI	one	×tĭ			Mem	iory
SC17	01BF	15-100	12	28kB Fla	ash	256kB SRAM (9kB with ECC)
Connec		Syst	tem			Connectivity
HS-S SPI Ma	SPI	Command	Sequence	er	_	Ext. Serial Flash
GPI	0	Watchdog	S	leep		Ethernet ext.
PWI	RT	Timer	Clock			HOST I/F I ² S
		Con	fig. FiFc		I ² C Interrupt	
	SEERIS	5 [®] 2D Engine			AI	PIX [®] 3 Rx
Capture Engine	LVI	DS, VESA DSC decode, Histogram				PixelLink
Pixel Engine		es, 34 layers, Alpha blend lown-scale, Safety layer	d,		e Band	Remote Handler
Display		Signature Unit 			Link	HDCP 1.4
Output Engine	Outpu	ut: 160Mpix/s, FHD/30bit enLDI, miniLVDS, TTL, R:			A	PIX®3 Phy

Figure 1.2. : SC1701BH5-100 block diagram

1.5. Package

1.5.1. SC1701BK3-100 Package

Table 1.11. : Package Characteristics

	-
Package	HS-BGA
Pins	319
Dimensions	23 x 23 mm
Pitch	1 mm

Figure 1.3. : SC1701BK3-100 Package

1.5.2. SC1701BH5-100 Package

Table 1.12. : Package Characteristics

Package	EP-LQFP
Pins	216
Dimensions	24x24 mm
Pitch	0.4 mm

Figure 1.4.: SC1701BH5-100 Package (top view, dimensions in mm)

Figure 1.5.: SC1701BH5-100 Package (bottom view; dimensions in mm)

Figure 1.6. : SC1701BH5-100 - Exposed pad soldering pattern

1.6. Part Number Code

Figure 1.7. : Part number code

1.7. Pinning

1.7.1. SC1701BK3-100 Pin Overview

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
/														1		w						
	#VSS1	TSIG0 _5	TSIG0 _2	TMS	#VSS8 9	SMC_2 M_3	SMC_1 M_3	SMC_2 M_2	SMC_1 M_2	SMC_2 M_1	SMC_1 M_1	SMC_2 M_0	SMC_1 M_0	#VSS8 7	ADC0	ADC2	ADC6	#VSS8 4	TSIG1 _0	TSIG1 _2	TSIG1 _5	#VSS4
	TSIG0 _7	TSIG0 _6	TSIG0 _4	TSIG0 _1	#VSS9 0	SMC_2 P_3	SMC_1 P_3	SMC_2 P_2	SMC_1 P_2	SMC_2 P_1	SMC_1 P_1	SMC_2 P_0	SMC_1 P_0	#VSS8 8	ADC1	ADC3	ADC7	#VSS8 5	TSIG1 _1	TSIG1 _4	TSIG1 _6	TSIG1 _8
	#VSS2 6	#VSS2 7	#VSS2 8	TSIG0 _3	TSIG0 _0	тск	TDI	TRST	#VSS9 1	#VSS9 2	#VSS9 3	#VSS9 4	FLSH_ TM	FLSH_ VREF	#VSS8 6	ADC4	ADC5	FSOU RCE	TSIG1 _3	#VSS7 8	#VSS8 2	#VSS8 3
	DISP0 P15	DISP0 N15	#VSS2 9	TSIG0 _ ⁸	#VDE 16	TDO	#VSS9 5	#VDE 24	#VDE 23	#VDE 22	#VSS9 6	#VSS9 7	#VSS9 8	#VDE 21	ADC_ AVD	RESET O_N	RESET	#VDE 20	TSIG1 _7	#VSS7 9	DISP1 N15	DISP1 P15
	DISP0 P14	DISP0 N14	#VDE 1	TSIG0 _9															TSIG1 _9	#VSS8 0	DISP1 N14	DISP1 P14
	DISP0 P13	DISP0 N13	#VSS3 0	TSIG0 _ ¹⁰															TSIG1 _10	#VSS8 1	DISP1 N13	DISP1 P13
i	DISP0 P12	DISP0 N12	#VDE 2	TSIG0 _11															TSIG1 _11	#VDE 19	DISP1 N12	DISP1 P12
1	DISP0 P11	DISP0 N11	#VSS3 1	#VDE 3															#VSS7 3	#VSS6 4	DISP1 N11	DISP1 P11
	DISP0 P10	DISP0 N10	#VSS3 2	#VDE 4					#VSS5	#VDDI 1	#VDDI 2	#VDDI 3	#VDDI 4	#VSS2 5					#VDE 18	#VSS6 5	DISP1 N10	DISP1 P10
۲	DISP0 P9	DISP0 N9	#VDE 5	#VSS5 8					#VDDI 5	#VSS6	#VSS1 0	#VSS1 5	#VSS2 0	#VDDI 11					#VDE 17	#VSS6 6	DISP1 N9	DISP1 P9
	DISP0 P8	DISP0 N8	#VSS3 3	#VSSE PLL0					#VDDI 6	#VSS7	#VSS1 1	#VSS1 6	#VSS2 1	#VDDI 12					#VSSE PLL1	#VSS6 7	DISP1 N8	DISP1 P8
	DISP0 P7	DISP0 N7	#VSS3 4	#VDDE PLL0					#VDDI 7	#VSS8	#VSS1 2	#VSS1 7	#VSS2 2	#VDDI 13					#VDDE PLL1	#VSS6 8	DISP1 N7	DISP1 P7
1	DISP0 P6	DISP0 N6	#VSS3 5	#VDE 6					#VDDI 8	#VSS9	#VSS1 3	#VSS1 8	#VSS2 3	#VDDI 14					#VDE 15	#VSS6 9	DISP1 N6	DISP1 P6
,	DISP0 P5	DISP0 N5	#VSS3 6	#VSS6 0					#VDDI 9	#VDDI 10	#VSSA 2	#VSSA 3	#VSS2 4	#VDDI 15					#VSS7 5	#VSS7 0	DISP1 N5	DISP1 P5
2	DISP0 P4	DISP0 N4	#VSS3 7	#VSS6 1															#VSS7 6	#VSS7 1	DISP1 N4	DISP1 P4
	DISP0 P3	DISP0 N3	#VSS3 8	#VSS6 2															#VSS7 7	#VSS7 2	DISP1 N3	DISP1 P3
	DISP0 P2	DISP0 N2	#VDE 7	#VSS6 3															GPIO7	#VDE 14	DISP1 N2	DISP1 P2
'	DISP0 P1	DISP0 N1	#VDE 8	GPIO0						RX0P	RX0N	#VSSA 1	RX1N	RX1P					GPIO6	#VDE 13	DISP1 N1	DISP1 P1
,	DISP0 P0	DISP0 N0	#VSS3 9	GPIO1	GPIO2	12C0_S DA	12C0_S CL	#VDE 10	#VSS4 7		1	#VDEA 2			#VDEA 3	TEST_ EN	GPIO8	GPIO3	GPIO4	#VSS5 7	DISP1 N0	DISP1 P0
,	#VSS4 0	#VSS4 1	#VSS4 2	#VSS4 3	#VSS4 4	#VSS4 5	#VDE 9	#VSS4 8	#VSS4 9	#VDEA 1		#VDDA _VCO1	#VSSA 7		#VSSA 8	#VSS5 1	#VSS5 2	#VSS5 3	#VDE 12	GPIO5	#VSS5 4	#VSS5 5
	#VSS4 6	FPD0_ N4	FPD0_ N3	FPD0_ NCK	FPD0_ N2	FPD0_ N1	FPD0_ N0	#VDE 11	хо	#VSSA 4		#VSSA 6	#VDDA 2		#VDDA 4	FPD1_ N0	FPD1_ N1	FPD1_ N2	FPD1_ NCK	FPD1_ N3	FPD1_ N4	#VSS5 6
3	#VSS2	FPD0_ P4	FPD0_ P3	FPD0_ PCK	FPD0_ P2	FPD0_ P1	FPD0_ P0	#VSS5 0	хі	#VDDA 1		#VDDA 3	ATST		#VSSA 5	FPD1_ P0	FPD1_ P1	FPD1_ P2	FPD1_ PCK	FPD1_ P3	FPD1_ P4	#VSS3

Figure 1.8.: SC1701BK3-100 Pin Overview

1.7.2. SC1701BH5-100 Pin Overview

1.7.3. Pin Descriptions and Multiplexing

The functionality of many pins changes according to the pin multiplexing mode that is set.

SC1701BK3-100: For details refer to the attached pin table SC1701BK3_pinlist_v1.22.xlsx.

SC1701BH5-100: For details refer to the attached pin table SC1701BH5_pinlist_v1.22.xlsx.

2. Electrical Characteristics

2.1. Operating Conditions

2.1.1. Absolute Maximum Ratings

Note: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of the absolute maximum ratings. Do not exceed these ratings.

Parameter	Symbol	Min	Мах	Unit	Comment
Core supply	VDD	VSS -0.3	VSS+1.8	V	
IO supply	VDE	VSS -0.3	VSS+4.0	V	
VPLL DISP0 supply	VDDEPLL0	VSS -0.3	VSS+4.0	V	Only in SC1701BK2
VPLL DISP1 supply	VDDEPLL1	VSS -0.3	VSS+4.0	V	Only in SC1701BK3
ADC and bandgap reference supply	ADC_AVD	VSS -0.3	VSS+4.0	V	
APIX IO supply	VDEA	VSS -0.3	VSS+4.0	V	
APIX core supply	VDDA	VSS -0.3	VSS+1.8	V	
APIX VCO supply	VDDA_VCO	VSS -0.3	VSS+1.8	V	
Input voltage*	VI	VSS -0.3	VDE +0.3	V	
OSC input voltage	XI	VSS -0.3	VDD +0.3	V	
OSC output voltage	ХО	VSS -0.3	VDD +0.3	V	
Analog input voltage	VIA	VSS -0.3	ADC_AVD + 0.3	V	< 4.0V
APIX analog input voltage	VIAPX	VSS -0.3	VDEA + 0.3	V	< 4.0V
Output voltage	VO	VSS -0.3	VDE +0.3	V	< 4.0V
Storage temperature	T _{ST}	-55	150	°C	
Junction temperature	Тј	-40	150	°C	
* Input voltage of BID33-IO	and MSIO (RSDS	LVDS, miniLVDS)		

Table 2.1. :	Absolute Maximum Ratings	5
	/ looolate maximani r tatinge	-

Note: • Applying stress exceeding the maximum ratings (voltage, current, temperature, etc.) may cause damage to semiconductor devices. Never exceed the ratings above.

- Never connect IC outputs or I/O pins directly, or connect them to VDD or VSS directly, otherwise thermal destruction of elements will result. This does not apply to pins designed to prevent signal collision.
- Provide ESD protection, such as grounding, when handling the product; otherwise externally charged electric charge flows inside the IC and discharges, which may result in damage to the circuit.
- Applying voltage higher than VDD or lower than VSS to I/O pins of CMOS IC, or applying voltage higher than the ratings between VDD and VSS may cause latch-up. The latch-up increases supply current, resulting in thermal destruction of elements. When handling the product, never exceed the maximum ratings.

2.1.2. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit	Comment
Core supply	VDD	1.20	1.26	1.32	V	
IO supply	VDE	3.0	3.3	3.6	V	Including GPIOs, MSIOs, embedded flash
VPLL DISP0 supply	VDDEPLL0	3.0	3.3	3.6	V	Only in SC1701BK3
VPLL DISP1 supply	VDDEPLL1	3.0	3.3	3.6	V	
ADC and bandgap reference supply	ADC_AVD	3.0	3.3	3.6	V	Stable supply is needed for operation of embed- ded flash, POR and ADC
APIX IO supply	VDEA	3.0	3.3	3.6	V	
APIX core supply	VDDA	1.20	1.26	1.32	V	
APIX VCO supply	VDDA_VCO	1.20	1.26	1.32	V	
Ambient temperature	T _a	-40		105	°C	

Table 2.2. : Recommended Operating Conditions

2.2. Power Consumption

				Rating			
Parameter	Symbol	Min	Тур	M SC1701BK3-100	ax SC1701BH5-100	Unit	Comment
Core supply	I _{VDD}			1.80	1.20	А	
IO supply	I _{VDE}			0.70	0.46	A	BH5: DISP1, CAP1 VPLL, and CAP0 VPLL all active
VPLL0 supply	I _{VDDE_PLL0}			70	N/A	mA	BK3: Both DISP0 and CAP0 VPLL active
VPLL1 supply	I _{VDDE_PLL1}			70	N/A	mA	BK3: Both DISP1 and CAP1 VPLL active
ADC and bandgap reference supply	I _{ADC_AVD}			4	4	mA	
APIX analog supply	I _{VDDA}			185	185	mA	BK3: Both RX 6Gbit/s active
APIX IO supply	I _{VDEA}			51	51	mA	
APIX VCO supply	I _{VDA_VCO}			7	7	mA	
N/A: Will not be avail	able in SC170)1BH5 chi	ps.	L			·

 Table 2.3. :
 Power Consumption (estimated values)

2.3. Thermal Design Considerations

Table 2.4 shows the estimated junction-to-ambient thermal resistance and junction-to-top-center-of-package thermal characterization. This thermal performance depends not only on the SC1701 package, but also on the characteristics of the PCB on which it is mounted.

Device	Package	Θ _{JA} [ºC/W]	Ψ _{JT} [°C/W]	Comment
SC1701BH5	EP-LQFP216	15.9	0.26	
SC1701BK3	TEBGA319	15.5	5.29	

Table 2.4. : Thermal Parameters

PCB conditions: JEDEC PCB 4 layer 114.3x101.6x1.6mm, FIoTHERM_JEDEC environment. The power consumption varies according to the application (i.e., depending on the use case).

2.4. Clock Input

Figure 2.1. : Clock Input

Table 2.5. : Clock Input Specifications

Parameter	Symbol	Min	Тур	Мах	Unit	Comment
Crystal frequency	X1	-100 ppm	30	+100 ppm	MHz	(*2)
External load capacity	C1, C2		10		pF	Value depends on crystal
Damping resistor	Rd				Ohm	lf needed, value depends on crystal
Input amplitude	V _{IH_XI}	0.8 * VDD			V	
	V _{IL_XI}			0.2 * VDD	V	
Figure of effort	EF			1.0		(*1)

^(*1) *EF= f * C^{0.8} * R^{0.61}* where

EF = figure of effort

f= frequency of oscillation

C= capacitive loading on XI and XO

R= crystal equivalent series resistance

Use the figure of effort equation (EF) to confirm that oscillation can be achieved at the target frequency for the specific loading characteristics (ESR, C) of the crystal in your design.

Note that the lower the calculated EF number is, the higher is the margin for the oscillator. The target EF number should be lower than the stated maximum to obtain more margin, recommended is EF < 0.8.

(*2) The listed accuracy is enough for the operation of APIX. If other interfaces, e.g. MII, need higher accuracy, then derive the necessary accuracy from the related blocks.

2.5. Reset Timing

Figure 2.2. : Reset Timing

Table 2.6. : Timing Parameters Re	leset
-----------------------------------	-------

Parameter	Symbol	Min	Тур	Max	Unit	Comment
Reset low time	T _{RST}	1.0			ms	

Data Sheet

2.6. Power-On Sequence

The figure below shows the power-On sequence and the groups of power supply that might be used, depending on the actual application.

VDD12 stands for the following supplies: VDD, VDDA, VDDA_VCO

VDDE stands for the following supplies: VDE, VDDE_PLL0, VDDE_PLL1, VDEA, ADC_AVD

Figure 2.3. : Power-On Sequence

Parameter	Symbol	Min	Тур	Мах	Unit	Comment
Power rise time	t _{PWR_R}	0.05		30	ms	
Power rise delay	t _{PWR_D}	0		1	S	
Power slew rate		0.1		20	mV/us	

2.7. Flash Memory Program / Erase Characteristics

Parameter	Val	ue ¹⁾	Unit	Remarks			
i urumeter	Min	Мах					
Sector erase time	16	20	ms				
Word programming time	16	20	μs				
¹⁾ Program/Erase cycle = Immediately after shipment							

Table 2.9. : Program/Erase cycle and data retention time²⁾

Program/Erase cycle at each sector		Data retention time				
Min value	Unit	Min value	Unit			
1000	cycles	20	years			
10000	cycles	10	years			
²⁾ These parameters are measured only for initial qualification.						

Data Sheet

2.8. ADC Sampling Time

The SC1701 has an embedded 12-bit successive approximation ADC with an internal integrated sampling and holding stage. The signal will charge the sampling capacitor first and then the voltage signal on the sampling capacitor will be evaluated by the 12-bit ADC. The time to charge the sampling capacitor to its final value, equal to the signal level, is a function of the internal and external capacitor and resistor values. To reduce the error caused by the limited settling time to an acceptable level, the sampling time should be chosen much larger than the time constant to charge the sampling capacitor. The sampling time can be set with the ADC *TIMING.Tsample* register field.

^{*)} The ADC inputs should be bypassed with a capacitor 0.01~0.1uF. For details see Application Note: SC1701xxx PCB Design Guideline

Figure 2.4. : ADC input signal

The minimum sampling time can be calculated with the following formula: Example: When ADC_AVD = 3.3V (see <u>Table 2.2</u> for ADC_AVD range).

For pins ADC0 ... ADC7 $Tsample[min] = F \times (46ns + (0.0135nF \times Rext\Omega) + (Rext\Omega \times CextnF))$

Table 2.10. : Factor F

ADC bit width	F
12 (default)	9.02
11	8.32
10	7.63
9	6.94
8	6.24
7	5.55
6	4.86
5	4.16
4	3.47
3	2.78
2	2.08
1	1.39

Note: The application requirements determine the ADC bit width and factor F can be derived from Table 2.10.

With $Rext = 0\Omega$

Tsample[min] = 415ns

Limitation

Tsample always < 10µs

2.8.1. ADC Electrical Characteristics

Parameter	Symbol	Min	Тур	Мах	Units
Performance			l		
Integral non-linearity	INL		±3.5	±4.5	LSB
Differential non-linearity	DNL		±2.5	±3.5	LSB
Zero transition error	V _{EZ}	-20		+20	mV
Full-scale transition error	V _{EF}	-20		+20	mV

2.8.2. Timing Characteristics

Parameter	Symbol	Min	Тур	Мах	units
Sampling cycle	CYCS	2			cycle
Sampling time	T _S	277		10000	ns
Conversion cycle	CYC _{CNV}		13		cycle
Wake-up time from power-down	T _{WU}	10			μs

Table 2.12. : Timing characteristics

The conversion rate is defined by the sum of the sampling cycle and the conversion cycle.

Example 1: When the sampling and conversion cycles are 5 and 13 respectively, it means a 0.833 MS/s conversion rate at FCLK = 15 MHz.

Example 2: When the sampling and conversion cycles are 150 (max) and 13 respectively, it means a 0.092 MS/s conversion rate at FCLK = 15 MHz.

2.9. PCB Layout Recommendations

2.9.1. Automotive Pixel Link (APIX)

Please refer to the layout recommendations in Application Note "PCB Design Guideline".

2.9.2. Configuration Pins

The following solutions are recommended when using the configuration pins.

Unused pin with pull-down

Figure 2.5.: Unused pin with pull-down

Unused pin with pull-up

Figure 2.6. : Unused pin with pull-up

After power On, the internal pull-down must be switched Off to avoid power leakage.

Figure 2.7. : Configuration pins are output

Note: The CFGx signal is latched 10us (260 osc_clk cycles after RESETN chip input released); therefore, disable CFG value driver 10us after chip reset release!

Configuration pins are input - External device does not support pull-up

Figure 2.8. : Configuration pins are input

In this case, we recommend implementing a tri-state buffer on the board and an additional tri-state buffer in order to disconnect the external device from the CFG signals. After power On, the internal pull-down should be disconnected.

Note: The CFGx signal is latched 10us (260 osc_clk cycles after RESETN chip input released); therefore, disable CFG value driver 10us after chip reset release!

IO - External device does not support pull-up

Figure 2.9. : IO - External device does not support pull-up

In this case, the external device must be in high-impedance state during reset. After power On, the internal pull-down should be disconnected.

Note: The CFGx signal is latched 10us (260 osc_clk cycles after RESETN chip input released); therefore, disable CFG value driver 10us after chip reset release!

2.10. AC Limits

2.10.1. Host SPI Characteristics

2.10.1.1. Host SPI Interface

Figure 2.10. : Timing SPI interface

Parameter	Symbol	Val	ue		Unit	Remarks
i diameter	Cymbol	Min	Тур Мах		onic	Keinarko
clk period	t _{CK_HSPI}	34			ns	Minimum 4 * HCLK period.
clk to output data	t _{CQ_HSPI}	0		20	ns	
Input data setup	t _{SU_HSPI}	10			ns	
Input data hold	t _{HD_HSPI}	5			ns	
Input Control setup	t _{HD_TMS}	50 + 2 * tHCLK			ns	
Input Control Hold	t _{HD_TMS}	50 + 2 * tHCLK			ns	
2.10.2. Config Interface

Figure 2.11. : Timing configuration pins

Table 2.14. : AC timing configuration pins

Parameter	Symbol	Val	ue		Unit	Remarks
i diameter	Oymbol	Min	Тур	Мах	Onic	Remarks
cfg data setup	t _{SU_CFG}	50			ns	
cfg data hold	t _{HD_CFG}	250			ns	

Data Sheet

2.10.3. Display Interface

2.10.3.1. TTL Mode

Figure 2.12. : Timing display TTL interface

Parameter	ameter Symbol Value			Unit	Remarks		
T di diffeter	Gymbol	Min	Тур	Мах	Onic		
dsp_clk period	t _{DSP_CLK}	5.5			ns	Internal clock for reference only.	
bit_clk period	^t віт_сік	1.8			ns	Internal clock for reference only, integer multiple of dsp_clk.	
Pixel clock period	^t PIX_CLK	11	11.7		ns	Typical value is maximum pixel frequency, minimum value is due to spread spectrum and clock synthesis.	
Shift value	t _{SS_DISP}	typ -150	$n \times t_{\rm BIT_CLK}$	typ + 150	ps		
Half cycle shift	t _{SH_DISP}	typ -200	$\frac{t_{\rm BIT_CLK}}{2}$	typ + 200	ps		
TTL DISP mismatch	t _{M_TTL_D}	-0.5		+0.5	ns		
TSIG TTL mismatch	t _{M_TTL_T}	1.5		4.5	ns	Related to center of DISP out- puts.	

2.10.3.2. RSDS Mode

Figure 2.13. : Timing display RSDS interface

Parameter	ter Sumbel Value		Unit	Democrite			
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
dsp_clk period	t _{DSP_CLK}	5.5			ns	Internal clock for reference only.	
bit_clk period	t _{BIT_CLK}	1.8			ns	Internal clock for reference only, integer multiple of dsp_clk.	
Pixel clock period	t _{PIX_CLK}	11	11.7		ns	Typical value is maximum pixel fre- quency, minimum value is due to spread spectrum and clock synthesis.	
Shift value	t _{SS_DISP}	typ - 150	$n \times t_{\rm BIT_CLK}$	typ + 150	ps		
Half cycle shift	t _{SH_DISP}	typ - 200	$\frac{t_{\rm BIT_CLK}}{2}$	typ + 200	ps		
TSIG output mis- match	t _{M_TTL}	-1.0		+1.0	ns		
RSDS to TSIG shift	t _{ST_DISP}	0.4	2.5	4.6	ns		
RSDS output mis- match	t _{M_DIV}	-0.5		+0.5	ns		

Table 2.16. :	AC timings RSDS	display interface
10010 2.10	AC unings RODO	uspiay interface

2.10.3.3. LVDS Mode

Figure 2.14. : FPD-link transmitter pulse positions

Table 2.17. :	Transmitter switching	characteristics
	rianonnicor owiconning	onunuotonistios

Symbol	Parameter	Min	Тур	Мах	Units		
TPPOS1	Transmitter Output Pulse for bit 1 (1st bit)	-0.15	0	+0.15	UI (*)		
TPPOS0	Transmitter Output Pulse for bit 0 (2nd bit)	1 - 0.15	1	1 + 0.15	UI (*)		
TPPOS6	Transmitter Output Pulse for bit 6 (3rd bit)	2 - 0.15	2	2 + 0.15	UI (*)		
TPPOS5	Transmitter Output Pulse for bit 5 (4th bit)	3 - 0.15	3	3 + 0.15	UI (*)		
TPPOS4	Transmitter Output Pulse for bit 4 (5th bit)	4 - 0.15	4	4 + 0.15	UI (*)		
TPPOS3 Transmitter Output Pulse for bit 3 (6th bit) 5 - 0.15 5 5 + 0.15 UI (*)							
TPPOS2 Transmitter Output Pulse for bit 2 (7th bit) 6 - 0.15 6 6 + 0.15 UI (*)							
(*) A Unit Interval (UI) is defined as 1/7th of an ideal clock period (TCIP/7). The minimum TCIP is 7.50ns.							
Example: F	or a 7.50ns clock period (1.33.3MHz), 1 UI= 1.0714r	ns (see <u>Figure</u>	<u>2.14</u>).				

2.10.4. SPI Interface (External SPI and Flash SPI)

Figure 2.15. : Timing SPI interface

Table 2.18. :	AC timings SPI interface
---------------	--------------------------

Parameter	Symbol		Value		Unit	Remarks
Falameter	Symbol	Min	Тур	Мах		Remarks
clk period	t _{CK_SPI}	25			ns	Period depends on selected AHB clock frequency.
clk to output data	t _{CQ_SPI}	-4		9.5	ns	Active clock edge depends on inter- face setup.
	t _{SU_SPI}					Active clock edge depends on inter- face setup.
input data setup		15			ns	No re-timing mode.
		7.5			ns	Re-timing mode.
						Active clock edge depends on
input data hold	t _{HD_SPI}					interface setup.
		-3			ns	No re-timing mode.
		2.5			ns	Re-timing mode.

2.10.5. I²C Interface

The SC1701BK3-100 / SC1701BH5-100 fulfills the timing requirements for the standard mode and fast mode of the Philips I^2C specification.

The supply voltage to the I²C-bus lines (SDA and SCL) must not exceed the power-supply voltage of this I/O cell (VDE).

Voltage must not be supplied to the I²C-bus lines (SDA and SCL) if the power supply of this I/O cell (VDE) is Off.

2.10.6. USART/LIN Interface

Figure 2.16. : Timing U(S)ART interface

Table 2.19. :	AC timings	U(S)ART interface
---------------	------------	-------------------

Parameter	Symbol	Value				Remarks
i didineter	Cymbol	Min	Тур	Мах	Unit	Remarko
CLK period	t _{CK_USART}	4 x t _{rbus_clk}			ns	
CLK to output data	t _{CQ_USART}	-5		20 2 x t _{rbus_clk} + 45	ns	Internal CLK mode External CLK mode
Input data setup	t _{SU_USART}	t _{rbus_clk} + 25			ns	
Input data hold	^t HD_USART	t _{rbus_clk}			ns	

2.10.7. I²S Interface

Figure 2.17. : Timing I²S interface

Table 2.20. : AC timings I²S interface

Parameter	Symbol	Value			Unit	Remarks
Falameter	Cymbol	Min	Тур	Max	onit	Kennarko
MCLK period	t _{MCK_I2S}	18.5			ns	
SCLK period	t _{CK_I2S}	37			ns	Half frequency of MCLK.
MCLK to SCLK delay	t _{DMS_I2S}	0		10	ns	
SCLK to output data	t _{CQ_I2S}	-5		10	ns	

2.10.8. Mll Interface

All MIII AC timings are analyzed based on the pinmux groups M7-M11 EXTMAC_MII and M19-M22 EXTPHY_MII (see attachment Pinmux_MII_RMII.xlsx in Hardware Manual). For other pinmux settings the AC timing cannot be guaranteed.

Figure 2.18. : AC Timing MII (external PHY)

Parameter	Symbol		Value			Comment
	Symbol	Min	Тур	Мах	Unit	Comment
MII_CLK period	^t ск_міі		40 400		ns ns	100Mbit 10Mbit 2)
Output delay	t _{CQ_MII}	4		20	ns	1)
Input data setup	t _{SU_MII}	10			ns	2)
Input data hold	t _{HD_MII}	10			ns	2)
 For 8mA drive stren Input transition 2.0r 		Load DISP*	IOs, 30pF	other IOs		

Figure 2.19. : AC Timing MII (internal PHY, external MAC is connected)

Parameter	Symbol	Value		Unit	Comment	
	Symbol	Min	Тур	Max	Onit	comment
MII_CLK period (output)	t _{СК_МІІ}		40 400		ns ns	100Mbit 10Mbit 3)
Duty cycle		40%		60%		3)
Output delay	t _{CQ_МII}	12		23	ns	1)
Input data setup	t _{SU_MII}	10			ns	2)
Input data hold	t _{HD_MII}	0			ns	2)
1) For 8mA drive streng 2) Input Transition 2.0n		oad DISP*	IOs, 30pF	other IOs	1	

3) For maximum drive strength , 20pF Load DISP* IOs, 30pF other IOs

2.10.9. RMII Interface

Only RMII reference clock output is supported.

All RMIII AC timings are analyzed based on the pinmux groups M1-M5 EXTMAC_RMII and M12-M16 EXTPHY _RMII(see attachment Pinmux_MII_RMII.xlsx in HM). For other pinmux settings the AC timing cannot be guaranteed.

Figure 2.21. : AC Timing RMII (external MAC)

Parameter	Symbol	Value			Unit	Comment
rarameter	Gymbol	Min	Тур	Max	0.m	Comment
RMII CLK period	^t CK RMII		20		ns	100Mbit 2)
Duty cycle		35%		65%		2)
Output delay	t _{CQ RMII}	2		11	ns	1), 4)
Input data setup	t _{SU RMII}	4			ns	3)

Parameter	Symbol		Value		Unit	Comment	
Farameter	Symbol	Min	Тур	Мах	Onic		
Input data hold	t _{HD RMII}	2			ns	3)	
1) For 8mA drive strength setting, 20pF Load DISP* IOs, 30pF other IO							
2) For maximum drive strength, 20pF Load DISP* IOs, 30pF other IO							
3) Input Transition 2.0ns, SMT=0							
4) Max output delay 13ns for M1 (TSIG0* DISP0* IOs)							

Data Sheet

2.11. IO Circuit Types

This section goes over the different IO circuit types used in SC1701BK3-100 / SC1701BH5-100. The different IO circuit types listed here correspond to the column "Pin Type" in the attached files SC1701BK3_pinlist_v1.22.xlsx and SC1701BH5_pinlist_v1.22.xlsx.

2.11.1. OSC

Figure 2.22. : Circuit type OSC

Characteristics:

- VDD supply domain
- High-speed oscillation circuit
- Input frequency: 30MHz APIX

2.11.2. INPUT, INPUTH

Figure 2.23. : Circuit type INPUT, INPUTH

Characteristics:

- VDE IO supply domain
- CMOS input

Parameter	Symbol	Min	Тур	Мах		
CMOS	VIH	0.8*VDE		VDE		
	VIL	0V		0.2*VDE		
Receiver hysteresis*	Н	0.50V		0.65V		
* parameter for INPUTH						

2.11.3. BIDI33

Figure 2.24. : Circuit type BIDI33

Characteristics:

- VDE IO supply domain
- CMOS level output

Parameter	Symbol	Min	Тур	Мах
High output	VOH	VDE-0.5V		VDE
Low output	VOL	0V		0.4V

Programmable output drive strength

Drive Setting	Symbol	Min	Тур	Max
00	IOL / IOH	2 ± 1mA		
01	IOL / IOH	4 ± 1mA		
10	IOL / IOH	8 ± 1mA		
11	IOL / IOH	12 ± 1mA		

CMOS SCMITT input

Parameter	Symbol	Min	Тур	Мах
CMOS	VIH	0.8*VDE		VDE
011100	VIL	0V		0.2*VDE

Programmable pull-up and pull-down resistor

Parameter	Symbol	Min	Тур	Мах
Pull-up / pull-down	R	35kOhm	60kOhm	120kOhm

2.11.4. Output

Figure 2.25. : Circuit type Output

Characteristics:

- VDE IO supply domain
- CMOS output level

Parameter	Symbol	Min	Тур	Мах
High output	VOH	VDE-0.5V		VDE
Low output	VOL	0V		0.4V

Output drive strength

Drive Setting	Symbol	Min	Тур	Мах			
	IOL	±1.5mA					
		Open drain *					
* for output drain output logic value "1", Pull CMOS driver is switched to HIZ state							

Pull-up resistor

Parameter	Symbol	Min	Тур	Мах
Pull-up	R	20kOhm		50kOhm

2.11.5. Analog

Figure 2.26. : Circuit type Analog

Characteristics:

- VDDEA IO supply domain
- Analog Pin
- Type INPUT: Analog input pin with ESD protection
- Type Output: Analog output line with ESD protection.

2.11.6. MSIO (Multi Standard IO)

2.11.6.1. LVDS TX

Figure 2.27. : Simplified circuit type MSIO LVDS TX

Parameter	Symbol	diff_iout[2:0]	lude omen	Condition	Lin	nits	Unit	
Farameter	Symbol	diff_iout[3:0]	lvds_emph	Condition	Min Max 85 182 125 267 164 353 200 433 229 514 87_enabled * 251 590	Мах	Unit	
	VOD0	0x0	0x0		85	182		
	VOD3	0x3	0x0		125	267		
	VOD6	0x6	0x0		164	353		
	VOD9	0x9	0x0		200	433		
Differential Output Voltage	VOD12	0xC	0x0	Internal termination R_T enabled *	229	514		
	VOD15	0xF	0x0		251	590	mV	
	VOD0e	0x0		68	144	IIIV		
	VOD3e	0x3	0x1		99	211		
	VOD6e	0x6	0x1		131	278		
	VOD9e	0x9	0x1		159	341		
	VOD12e	0xC	0x1		183	404		
	VOD15e	0xF	0x1		200	462		
Common Mode Voltage	VOC				1.00	1.50	V	
Internal Termination	R _T				80	120	Ω	

Table 2.24. : DC specification	ons for LVDS TX (over reco	ommended operating conditior	s unless otherwise noted)
--------------------------------	----------------------------	------------------------------	---------------------------

Registers relevant for LVDS TX

Setting for differential output voltage lout: DISP0.MSIOCTL_n.diff_iout_n or DISP1.MSIOCTL.n.diff_iout_n (n=0...15). 16 registers are available; for each differential pair individual setup is possible.

* internal termination should be enabled by DISP0.MSIOCTL.lvds_term or DISP1.MSIOCTL.lvds_term.

■ For LVDS TX emphasis the relevant registers are *DISP0.MSIOCTL.lvds_emph* or *DISP1.MSIOCTL_emph*.

The diagrams in Figure 2.28 show the emphasis impact on the LVDS signal wave form.

Figure 2.28. : LVDS signal wave form

The LVDS IO cell (MSIO) includes a driver that generates the nominal differential swing VOD. An additional delayed driver could drop swing level VOD to the level VODe in case the *lvds_emph* bit is set.

This function can improve the signal integrity, e.g., if longer cables are used.

Parameter	Symbol Condition			Unit		
i didinetei	Gymbol	Condition	Min	Тур	Мах	Onit
LVDS Channel to Channel Skew	ChSkew				100	ps
Cycle to N-Cycle Jitter, N=7	Jcc				100	mUI
Pre-Emphasis Time	T _{emph}			1		ns

Note: For higher LVDS bandwidth (>600Mbps/lane) the EHS (Enable High Speed) should be enabled.

2.11.6.2. LVDS RX

Figure 2.29. : Simplified circuit type MSIO LVDS RX

Parameter	Symbol Condition			Limits		Comment	
i arameter	Cymbol	Condition	Min	Max	Unit	oonment	
Differential Input Swing	VOC		160	600	mV	VIH and VIL must not be	
Input Common Mode	VIC	Internal termination R _T enabled		1.7	V	violated	
Single-ended input high voltage	VIH			1.78	V		
Single-ended input low voltage	VIL				V		
Internal Termination	R _T			120	Ω	*lvds_term must be set to 0x02	
	1		1	1		1	

Registers relevant for LVDS RX

- For LVDS lout the relevant registers are CAP0.MSIOCTL_n.diff_iout_n or CAP1.MSIOCTL_n.diff_iout_n (n=0...5).
 6 registers are available; for each differential pair individual setup is possible.
- The recommended value for LVDS capture is 0x9.

2.11.6.3. miniLVDS TX

Figure 2.30. : Circuit type MSIO miniLVDS Tx

Table 2.27. :	DC specifications for miniLVDS	over recommended operating	conditions unless otherwise noted)
		(· · · · · · · · · · · · · · · · · ·

Parameter	Symbol diff iout[3:0] lvds		lvds emph	Condition	Lin	Unit	
Falameter	Gymbol		wus_empir	Condition	Min	Мах	Onit
	VOD9	0x9	0x0		200	433	
	VOD12	0xC	0x0		229	514	
Differential Output Voltage	VOD15	0xF	0x0		251	590	mV
Differential Output Voltage	VOD9e	0x9	0x1	Internal termination R _T enabled*	159	341	mv
	VOD12e	0xC	0x1	External termination R _L =100Ω	183	404	
	VOD15e	0xF	0x1		200	462	
Common Mode Voltage	VOC				1.00	1.50	V
Internal Termination	R _T				80	120	Ω

Registers relevant for LVDS TX

Setting for differential output voltage lout: DISP0.MSIOCTL_n.diff_iout_n or DISP1.MSIOCTL.n.diff_iout_n (n=0...15). 16 registers are available, for each differential pair individual setup is possible.

■ * internal termination should be enabled by *DISP0.MSIOCTL.lvds_term* or *DISP1.MSIOCTL.lvds_term*.

■ For LVDS TX emphasis the relevant registers are *DISP0.MSIOCTL.lvds_emph* or *DISP1.MSIOCTL.lvds_emph*.

The diagrams in Figure 2.31 show the emphasis impact on the LVDS signal wave form.

Figure 2.31. : LVDS signal wave form

The LVDS IO cell (MSIO) includes a driver that generates the nominal differential swing VOD. An additional delayed driver could drop swing level VOD to the level VODe in case the *lvds_emph* bit is set.

This function can improve the signal integrity, e.g., if longer cables are used.

Table 2.28. : AC Specifications (over recommended operating conditions unless otherwise noted)

Parameter	Symbol Condition	Condition		Unit		
r ai aifietei		Condition	Min	Тур	Мах	Onic
LVDS Channel to Channel Skew	ChSkew				100	ps
Cycle to N-Cycle Jitter, N=7	Jcc				100	mUI
Pre-Emphasis Time	T _{emph}			1		ns

Note: For higher LVDS bandwidth (>600Mbps/lane) the EHS (Enable High Speed) should be enabled.

2.11.6.4. RSDS TX SST (Single Sided Termination)

Figure 2.32. : Circuit type MSIO RSDS TX SST

Tahle 2 20 ·	DC specifications	(over recommended o	perating conditions	unless otherwise noted)
Table 2.29	DC specifications		peraling conditions	uniess ounerwise noteu)

Symbol diff_iout[3:0] lvds_emph		lude omph	Condition	Limits		Unit
		wus_empn	condition	Min	Мах	onit
VOD0	0x0	0x0		167	330	mV
VOD3	0x3	0x0	•	245	485	
VOC			External termination $R_1 = 100\Omega$	1.00	1.50	V
R _T			-	high imp	edance	Ω
	VOD0 VOD3 VOC	VOD00x0VOD30x3VOC	VOD0 0x0 0x0 VOD3 0x3 0x0 VOC	VOD0 0x0 0x0 VOD3 0x3 0x0 VOC	Symboldiff_iout[3:0]lvds_emphConditionVOD00x00x0167VOD30x30x0Internal termination R _T disabled (high impedance) *245VOC1.00	Symbol diff_iout[3:0] lvds_emph Condition Min Max VOD0 0x0 0x0 167 330 VOD3 0x3 0x0 Internal termination R _T disabled (high impedance) * 245 485 VOC Image: Condition of the second s

Relevant registers for RSDS TX (SST)

Setting for differential output voltage lout: DISP0.MSIOCTL_n.diff_iout_n or DISP1.MSIOCTL_n.diff_iout_n (n=0...15). 16 registers are available; for each differential pair individual setup is possible.

- * the internal termination should be enabled by *DISP0.MSIOCTL.lvds_term* or *DISP1.MSIOCTL.lvds_term*.
- For LVDS TX emphasis the relevant registers are DISP0.MSIOCTL.lvds_emph or DISP1.MSIOCTL.lvds_emph.

Figure 2.33. : RSDS signal wave form

Cable 2.30. : AC Specifications (over recommended operating conditions unless otherwise noted)

Parameter	Symbol	Condition		Unit		
Falameter	Oymbol		Min	Тур	Мах	onit
LVDS Channel to Channel Skew	ChSkew				100	ps
Cycle to N-Cycle Jitter, N=7	Jcc				100	mUI

2.11.6.5. RSDS TX DST (Double Sided Termination)

Figure 2.34. : Circuit type MSIO RSDS TX DST

Tablo 2 31 ·	DC specifications (over recommended operation	ating conditions unless	otherwise noted)
Table 2.31	DC specifications (over recommended open	aling conditions unless	ounerwise noteu)

Parameter	Symbol diff_iout[3:0] lvds_	diff_iout[3:0]	lvds emph	Condition	Limits		Unit
i didilicter		wus_empir	Condition	Min	Мах		
Differential Output Voltage	VOD3	0x3	0x0		125	267	
	VOD6	0x6	0x0	Internal termination R _T disabled (high impedance) * External termination	164	353	mV
	VOD9	0x9	0x0		200	433	
	VOD12	0xC	0x0		229	514	
	VOD15	0xF	0x0		251	590	
Common Mode Voltage	VOC			RL1 RL2 = 100Ω 100Ω	1.00	1.50	V
Internal Termination *	R _T				high imp	bedance	Ω
Relevant registers for RSDS	TX (DST)):	•		•		

- Setting for differential output voltage lout: DISP0.MSIOCTL_n.diff_iout_n or DISP1.MSIOCTL_n.diff_iout_n (n=0...15). 16 registers are available; for each differential pair individual setup is possible.
- * the internal termination should be enabled by registers: DISP0.MSIOCTL.lvds_term or DISP1.MSIOCTL.lvds_term.

Parameter	Symbol	Condition		Unit		
i arameter	Gymbol	Condition	Min	Тур	Мах	Onit
LVDS Channel to Channel Skew	ChSkew				100	ps
Cycle to N-Cycle Jitter, N=7	Jcc				100	mUI

Table 2.32. : AC Specifications (over recommended operating conditions unless otherwise noted)

2.11.6.6. TTL

Figure 2.36. : Circuit type TTL

One MSIO cell includes two BIDE33 cells and the PADs are connected to the pins EBP_X and EBN_X (X:0,1). The "Receiver Enable REN" and the "Output Enable OEN" are controlled by the related multiplex function. The remaining ports are controlled by the registers in <u>Table 2.33</u>.

Table 2.33. : TTL-relevant registers

MSIO TTL Control Ports	MSIO Control Registers		
Slew Rate Control	MSIOCTL_X.ttl_srcn_X		
	MSIOCTL_X.ttl_srcp_X		
	(X:0,1)		
Drive Strength [2:4]	MSIOCTL_X.csn_X		
Drive Strength [2:1]	MSIOCTL_X.csp_X		
	(X:0,1)		
Sobmitt Triggor	MSIOCTL_X.smtn_X		
Schmitt Trigger	MSIOCTL_X.smtp_X		
	(X:0,1)		
Drive Dischlad State Control D[2:1]	MSIOCTL_X.ttl_dsn_X		
Drive Disabled State Control P[2:1]	MSIOCTL_X.ttl_dsp_X		
	(X:0,1)		

Characteristics

- VDE IO supply domain
- CMOS output level

Parameter	Symbol	Min	Тур	Мах
High output	VOH	VDE-0.5V		VDE
Low output	VOL	0V		0.5V

■ Programmable output drive strength

Drive Setting	Symbol	Min	Тур	Max
00	IOL / IOH	2 ± 1mA		
01	IOL / IOH	4 ± 1mA		
10	IOL / IOH	8 ± 1mA		
11	IOL / IOH	12 ± 12mA		

CMOS SCHMITT input

Parameter	Symbol	Min	Тур	Мах
CMOS	VIH	0.8*VDE		VDE
CIMOS	VIL	0V		0.2*VDE

■ Programmable pull-up/pull-down resistor

Parameter	Symbol	Min	Тур	Мах
Pull-up/ pull-down	R	35kOhm	60kOhm	120kOhm

Data Sheet

Warranty and Disclaimer

The contents of this document are subject to change without notice. Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of SOCIONEXT EUROPE GMBH devices.

SOCIONEXT EUROPE GMBH does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. SOCIONEXT EUROPE GMBH assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of SOCIONEXT EUROPE GMBH or any third party nor does SOCIONEXT EUROPE GMBH warrant non-infringement of any third-party's intellectual property right or other right by using such information. SOCIONEXT EUROPE GMBH assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that SOCIONEXT EUROPE GMBH will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor device has an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.